

21st Century Fa Overviews, Vol. 1 Intelligent Agents (IAs) emerge to render *best Fa advisories*

		Acc	ount:	Hepler Ma	olding 1	Equip Nan	ne: Hyd	21	Com	p Name:	Pump	L	ube Mfr:	
		App	lication:	Industrial	1	Equip Typ	e: Mol	ding Machir	e Com	p Type:	Hydraulic,	Vane Lu	ube Brand:	
1	1011				1	Equip Mfr	:		Com	p Mfr:		L	ube Grade:	ISO 4
	~ 300 JA	·			1	Equip Mod	del:		Com	p Model:				
C	ritical				1	Equip Ser!	No: 847	00	Com	p SerNo:	84700-1			
ListView Search Show						K	~~	< >	>>	×	Eq Eq>	Fee	dback	
DIAGNOSTIC ADVISORIES • Perform pump DIAGNOSTICS checks • Check SEALS for leakage or compromise														
AD	CHANICAI	L CONS	IDER INS PUMP / PU / ANES REARING RUSHING	PECTING F MP HOUSE S	OR ABN	ORMAL W	EAR IN 1	THE FOLLO	VING AI	REAS:				
Obs	ervations Reasoning	Upwa Logic Logic Abra Partic Logic	ard wear m al Iron Sou al Copper S sives are ra de Count is al or Possit	etals trend is irce: Pump I Source, Van ted at MING MODERAT ble Silicon So	ALARN Iousing, V e Pump: I OR level FELY HI surce: Sea	IING, sugg Vanes, Bear Bushing or 1 GH I Material	esting close ings, Roto Bearing Ca	e monitoring, r, Shaft age, as applici	or possib able	ly maintenar	nce action			
Lub Mai	e ntenance	• Chan • Chan	ge lube an ge filter	d flush syste	m									
Note	5	• Perfor	ming Analy	tical Ferrogra	phy on th	is sample m	ay help clar	ify the data, an	d subsequ	ent decision-r	making			
_														
	11/15/06	10/04/06	08/09/06	06/24/06		11/15/06	10/04/06	08/09/06 0	6/24/06		11/15/06	10/04/06	08/09/06	06/24/06
Fe	11/15/06 27	23	08/09/06 19	06/24/06 12	VIS 40	11/15/06 47.1	10/04/06 43.2	08/09/06 0 40.0 4	6/24/06 1.0	PC >4 mic	11/15/06 1542	10/04/06 1266	08/09/06 392	06/24/06 391
Fe	11/15/06 27 1	10/04/06 23 1	08/09/06 19 1	06/24/06 12 1	VIS 40	11/15/06 47.1	43.2	08/09/06 0 40.0 4	6/24/06 0.0	PC >4 mic PC >6 mic	11/15/06 1542 434	10/04/06 1266 270	08/09/06 392 47	06/24/06 391 36
Fe Cr Mo	11/15/06 27 1 1	10/04/06 23 1	08/09/06 19 1 0	06/24/06 12 1 0	VIS 40	47.1	43.2	08/09/06 0 40.0 4	6/24/06 0.0	PC >4 mic PC >6 mic PC >14 mic	11/15/06 1542 434 c 92	10/04/06 1266 270 80	08/09/06 392 47 8	06/24/08 391 36 7
Fe Cr Mo Al	11/15/06 27 1 1 3	10/04/06 23 1 1 2	08/09/06 19 1 0 1	06/24/06 12 1 0 2	VIS 40	11/15/06 47.1	100406 43.2	08/09/06 0 40.0 4	6/24/06	PC >4 mic PC >6 mic PC >14 mic PC >21 mic	11/15/06 1542 434 c 92 c 29	10/04/06 1266 270 80 31	08/09/06 392 47 8 4	06/24/08 391 36 7 1
Fe Cr Mo Al Ni	11/15/06 27 1 1 3 3	10/04/06 23 1 1 2 2	08/09/06 19 1 0 1 2	06/24/06 12 1 0 2 2 2	VIS 40	11/15/06 47.1	43.2	08/09/06 0 40.0 4	6/24/06 0.0	PC >4 mic PC >6 mic PC >14 mic PC >21 mic PC >38 mic	11/15/06 1542 434 c 92 c 29 c 1	10/04/06 1266 270 80 31 1	08/09/06 392 47 8 4 0	06/24/06 391 36 7 1 0
Fe Cr Mo Al Ni Cu	11/15/06 27 1 1 3 3 43	10/04/06 23 1 1 2 2 9	08/09/06 19 1 0 1 2 8	06/24/06 12 1 0 2 2 7	VIS 40	11/15/06 47.1	10/04/06 43.2	08/09/06 0 40.0 4	5/24/06 1.0	PC >4 mic PC >6 mic PC >14 mic PC >21 mic PC >21 mic PC >38 mic PC >70 mic	11/15/06 1542 434 c 92 c 29 c 1 c 0	10/04/06 1266 270 80 31 1 0	08/09/06 392 47 8 4 0 0	06/24/06 391 36 7 1 0 0
Fe Cr Mo Al Ni Cu Pb	11/15/06 27 1 1 3 3 43 1	10/04/06 23 1 1 2 2 9 2	08/09/06 19 1 0 1 2 8 1 1	06/24/06 12 1 0 2 2 7 1	VIS 40	47.1	10/04/06	08/09/06 0 40.0 4	6/24/06	PC >4 mic PC >6 mic PC >14 mic PC >12 mic PC >38 mic PC >70 mic ISO Code	11/15/06 1542 434 c 92 c 29 c 1 c 0 18/16/14	10/04/06 1266 270 80 31 1 0 17/15/14	08/09/06 392 47 8 4 0 0 0 16/13/10	06/24/00 391 36 7 1 0 0 16/12/10
Fe Cr Mo Al Ni Cu Pb Sn	11/15/06 27 1 1 3 3 43 1 1 1	10/04/06 23 1 1 2 2 9 2 1 1	08/09/06 19 1 0 1 2 8 1 1 1	06/24/06 12 1 0 2 2 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	V1S 40	11/15/06 47.1	10/04/06	08/09/06 0 40.0 4	6/24/06	PC >4 mix PC >6 mix PC >14 mi PC >21 mi PC >38 mi PC >70 mi ISO Code PQ Index	11/15/06 1542 434 c 92 c 29 c 1 c 0 18/16/14 27	10/04/06 1266 270 80 31 1 0 17/15/14 14	08/09/06 392 47 8 4 0 0 0 16/13/10 16	06/24/00 391 36 7 1 0 0 16/12/10 18
Fe Cr Mo Al Ni Cu Pb Sn Si	11/15/06 27 1 1 3 3 43 1 1 1 37	10/04/06 23 1 1 2 2 9 2 1 38	08/09/06 19 1 0 1 2 8 1 1 1 41	06/24/06 12 1 0 2 2 7 1 0 41	V1S 40	47.1	10:04:06 43.2	08/09/06 0 40.0 4	6/24/06 3.0	PC >4 mix PC >6 mix PC >14 mi PC >21 mi PC >38 mi PC >70 mi ISO Code PQ Index	11/15/06 1542 434 c 92 c 1 c 92 c 1	10/04/06 1266 270 80 31 1 0 17/15/14 14	08/09/06 392 47 8 4 0 0 0 16/13/10 16	06/24/0 391 36 7 1 0 0 16/12/10 18

Condition Monitoring International www.conditionmonitoringintl.com 305.669.5181 jpoley@conditionmonitoringintl.com

The Fa Evaluation Challenge

- Skilled Fa evaluators are retiring and expertise is being lost, as in many industries
- Remote evaluators often have a limited view of component history, parts composition, service application, etc.
- Wide variability in quality and content of interpretations

Actual report from a well-known national lab !!

Observation: Fe and Cu are abnormally high **Recommendation**: Identify source of high Fe and Cu levels

Using an Intelligent Agent to Evaluate (Expert System)

• An Expert System does two basic things:

- 1. <u>Rates Data</u> (Assigns a severity to the Data)
 - Limits
 - Trends, Acceleration
 - Moving Averages
 - Etc.
- 2. <u>Renders Advisories</u> (The Fa Deliverable), usually based on rules and, if sophisticated enough, considers past history

• Properties of a good Intelligent Agent

- Uses pattern recognition in addition to rules, including identification of persistent data combinations not previously vetted so that new rules can be created in priority fashion
- Can be adapted to virtually any Component and Application
- Addresses both the Machine and the Lubricant
- Can be collaborative to receive new knowledge and update existing knowledge
- Can vet its advisories, given appropriate feedback

EVALUATION Precision Data Rating 1st Challenge for Intelligent Agents

Ensure that data are correctly assessed as to their significance in order to draw the correct conclusion and sense of urgency

What's Needed:

- Statistics for each test to determine operating limits
- Normalization for time or distance and make-up
- Excursion trending beneath limits to spot movement; general trending to augment severity
- Consideration for the application and environment
- Flagging of data to indicate relative severity at several levels, setting the stage for for autocommentary algorithms to be invoked:

Severity	1	2	3	4		
Data	NOTABLE	ABNORMAL	HIGH	SEVERE		

Calculating and Setting Limits

	Low	High	Median	Avg	Std.Dev	1-sigma	2-sigma	<mark>3-sig</mark> ma	6-sigma
Fe	8	156	42	54	20	74	94	114	174
Cr	0	30	3	4	5	9	14	19	34
AI	0	43	5	7	9	16	25	34	61
Cu	5	104	17	20	11	31	42	53	86
Pb	4	88	10	12	9	21	30	39	66

- BE SURE TO CONSTRAIN THE DATA POLLED PROPERLY
- PREFER TO USE SITE'S DATA IF SUFFICIENT POPULATION EXISTS
- NEWER DATA ARE MORE IMPORTANT THAN OLDER DATA

Factored Trending

more realistic, credible movement measurement

Previo Ra	us Value Inge	Factor	Pivot DELTA	Final Factor	Flag Point FROM MaxValue		
>5	10	3	0.50	1.5	26		
^{MIN} >10	25 ^{MAX}	1.2	0.50	0.6	41		
>25	45	1	0.50	0.5	69		
>45	80	0.9	0.50	0.45	117		
>80	120	0.8	0.50	0.4	169		

For this component, a range from 26-45 is 'typical', representing the crest of a typical distribution curve. When a value falls above or below this range it must be treated as somewhat deviant, i.e., allowable changes (trending) must be compressed or expanded, consistent with the datum's relative position in the group distribution. A factor can be developed, based on a curve with several plot points specified, as per above, such that excursions are viewed proportionally.

EVALUATION Strong Maintenance Advisories 2nd Challenge for Intelligent Agents

There is no Evaluation unless an Advisory is rendered... What's Needed:

- In-depth comments with subtle nuances
- Advisories fired consistently, with complex algorithms for appropriate differentiation
- Advisories that are correctly phrased and sequenced for easy understanding and decision-making

Component Condition NOTABLE ABNORMAL URGENT CRITICAL

 A mechanism for acquiring Feedback as to maintenance performed (or *not*) and advisory verification, simultaneously creating hard data for program gains assessment

EVALUATION Hierarchical Interpretive Depth - Intelligent Differentiation -

- Equipment Type (Haul Truck, Plant, Marine Vessel, ...)
 - Equipment Mfr and Model

Equipment houses the Component

Component houses the lubricant (Component Type Required)

- *Component Type* (Gearset, Hydraulic, Gas Turbine, …)
 - Mfr: <u>CAT</u> (basic metallurgy knowledge)
 - Model: <u>3408E</u>
 - (more specific component knowledge and data rating)
 - Application (Industrial, Off-Road, Oil & Gas, ...)
 - Wild Card (any further differentiation that is needed)
- Lube Mfr and Brand (Mfr useless by itself)
- Lube Grade (Program can propose, if missing)
- Filter Type (Centrifugal, By-Pass, None)
- Filter Mfr and Brand
- Filter Micron or Beta Rating

EVALUATION Tables of Boundaries (TOB)

The more Control and Managing tools, the better... Caveat: Better be confident when tweaking

TOB	3 Name								TOE	Кеу	34					A	count Nun	nber I	ull)				
Арр	Туре	OFF	F-HIG	HWA	X				🔄 App	Sub Typ	e (N	ull)				🔻 Lu	be Mfr	(N	ull)				
Equi	quip Type (Null) 🔽 Ca					Con	пр Туре	68	BBFC - GEAR, Final Drive 🔽 Lube Brand					be Brand	(Null)								
Equi	iip Mfr	Volv	/0)				🔽 Com	np Mfr	(N	ull)				🔻 Lu	be Grade	(N	ull)				
Equi	ip Model	A35	5D						Com	np Model	(N	ull)				Ψ.							
	Save	Calcu	ulate		Select Al	ιι	Inselect A		lose														
	Dec	ult		im	Hilim	1%0	H%C	196.0	H% 0	MED	AVG	Sigma	Bon	Papae		PC)S Sev			POS Sig	na Factor	s	100
	- KGS	uit	.01	-1111	1 11 2.011	L 70C	11/00	L 70M	1170M	HED	AVG	Jigina	Fop	Kange	1	2	3	4	1	2	3	4	Maa
	Fe		0		199		50		35	37	75.73	102.89	1284	805(886)	199	323	436	693	1.20	2.40	3.50	6.00	
V	Fe - New		0		299		50		35	37	75.73	102.89	1284	805(886)	299	485	654	1040	1.20	2.40	3.50	6.00	1.50
	Cr		0		5		50		35	1	1.45	2.25	1284	11(11)	5	9	15	24	3.45	6.21	10.34	16.55	
\mathbf{V}	Cr - New		0		4		50		35	1	1.45	2.25	1284	11(11)	4	7	12	19	3.45	6.00	10.34	16.55	0.80
										—													

Negative severity is available, but normally not applied to wear metals. Standard statistical approaches are used, although the stats are nuanced against experience and other influential input.

There were 1284 samples from which to draw, making these numbers highly vetted.

A proprietary algorithm is used to make such decisions.

There was at least one outlier at 886ppm Iron, that was excused from the stats, once identified. Individual Accounts will usually need customized TOBs, based on their data in their Application and Environment ""Aggressiveness"" overrides, or individual Sigma factor changes for a flagging table are possible. Granularity is often very important in assessing (rating) data

EVALUATION 2-Phase Rule for Fe & Si (Wear vs. Abrasives?)

	2-Phase Rules Set for Iron Wear and Abrasives (silica?)											
Fe SEV 4	• Severe Wear	• Severe Wear	• Severe Wear	• Severe Wear								
	 Notable Silicon 	 Abnormal Abrasives 	 High Abrasives 	• Severe Abrasives								
Fe SEV 3	• High Wear	• High Wear	• High Wear	• High Wear								
	 Notable Silicon 	 Abnormal Abrasives 	 High Abrasives 	• Severe Abrasives								
Fe SEV 2	• Abnormal Wear	• Abnormal Wear	• Abnormal Wear	• Abnormal Wear								
	 Notable Silicon 	 Abnormal Abrasives 	 High Abrasives 	• Severe Abrasives								
Fe SEV 1	• Notable Wear	• Notable Wear	• Notable Wear	• Notable Wear								
	 Notable Silicon 	e Abnormal Abrasives?	• High Abrasives?	• Severe Abrasives?								

Si SEV 1 Si SEV 2 Si SEV 3 Si SEV 4

Takeaway Summary

Fa now has real time parity with any CM aspect, including Vibration and Ultrasound gaining traction at the turn of the 21st Century

- Tier 1 = Online at the machine (real time)
- Tier 2 = Onsite near the machine (growing fast)
- Tier 3 = Offsite remote testing

With all the data sensors provide, coupled with everincreasing complexity of machinery and lubricants, an Intelligent Agent is essentially a necessity to best assess machine condition and render advisories